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lotron Road, Berkeley, CA 94720, USA.email: flgrigori, xslig�lbl.govAbstra
tIn this paper we present a stati
 s
heduling algorithm for parallel sparse LU fa
-torization with stati
 pivoting. The algorithm is divided into mapping and s
hedulingphases, using the symmetri
 pruned graphs of LT and U to represent dependen
ies.The s
heduling algorithm is designed for driving the parallel exe
ution of the fa
toriza-tion on a distributed-memory ar
hite
ture. Experimental results and 
omparisons withSuperLU DIST are reported after applying this algorithm on real world appli
ationmatri
es on an IBM SP RS/6000 distributed memory ma
hine.1 Introdu
tionTo fa
torize unsymmetri
 and non-de�nite matri
es, many solvers rely on partial pivoting tomaintain numeri
al stability. In that 
ase, the stru
tures of the L and U fa
tors depend bothon the stru
ture of the initial A and on the row inter
hanges indu
ed by partial pivoting.Thus the L and U stru
tures 
annot be determined before the numeri
al 
omputation of thefa
tors. In parti
ular, this implies that some dynami
ally 
hanging data stru
tures shouldbe used, together with a dynami
 s
heduling algorithm that identi�es data dependen
ieswhile the numeri
al 
omputation is in progress. In a distributed memory environment thisapproa
h has been observed not to s
ale so well [1℄.A possible way to address the s
alability issue is to �rst evaluate to what extent repla
ingthe partial pivoting with other, more stati
 te
hniques, 
an help maintain numeri
al sta-bility. Li and Demmel show that su
h te
hniques are indeed possible [12℄. Their proposedSuperLU DIST solver uses a 2D distribution of the sparse matrix on a 2D grid of pro
essorsand is intended for large-s
ale distributed-memory ma
hines. This solver is highly paralleland its ability to s
ale proportionally with the matrix size has been tested on a set of largematri
es from various appli
ation domains. For almost all the matri
es, the 2D distributionled to a very good load balan
e. However, ex
eptions have been noted with some matri
es,for whi
h a signi�
ant load imbalan
e was observed on 64 pro
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the 64 pro
essors of a CRAY T3E [11℄ showed that the time spent in 
ommuni
ation orsyn
hronization represents a signi�
ant per
entage of the total exe
ution time. Even forthe matri
es for whi
h the algorithm s
ales well up to 128 pro
essors, more than 50% of thefa
torization time was spent waiting to re
eive messages.These experiments suggest that further re�nements are needed in order to improve theparallel eÆ
ien
y. Several possibilities exist, among whi
h the most relevant are: use morea

urate information about the dependen
ies between 
omputations, develop more sophis-ti
ated fun
tions to map blo
ks to pro
essors, 
onsider additional s
heduling te
hniquesoverlapping 
ommuni
ation and 
omputation.Several mapping and s
heduling algorithms have been proposed in the literature, mainlyin the 
ontext of the Cholesky fa
torization. These algorithms use the elimination tree [14℄to model the parallelism due to the sparsity of the matrix. An example of su
h an algorithmis the subtree to sub
ube mapping [7℄ whi
h leads to good performan
e if the eliminationtree is balan
ed. A generalization of this algorithm for unbalan
ed elimination tree is theproportional mapping algorithm, proposed by Pothen and Sun [15℄. These algorithms mapthe 
olumns to pro
essors during a top-down traversal of the elimination tree, balan
ingthe load while minimizing the 
ommuni
ation.Starting from these algorithms, a stati
 s
heduling algorithm was developed in thePaStiX solver [9℄. This algorithm is based on two distin
t phases. The �rst phase (parti-tioning phase) assigns to ea
h supernode j a set of 
andidate pro
essors. They are obtainedby using the proportional mapping algorithm of Pothen and Sun [15℄. The se
ond phase(mapping phase) simulates the parallel fa
torization to order the tasks asso
iated with the
omputation of ea
h supernode. These tasks are assigned to a subset of pro
essors from theset of 
andidate pro
essors. Thus, the 
omputation of ea
h supernode will be assigned toonly one pro
essor (in 1D distribution) or several pro
essors (in 2D distribution), dependingon the workload asso
iated to this supernode and the number of pro
essors in the set of
andidate pro
essors.In this paper we present a stati
 s
heduling algorithm for the sparse LU fa
torization.The main goal is to redu
e as mu
h as possible the 
ommuni
ation, while balan
ing theload. Similar to the PaStiX solver, the algorithm uses the �rst phase to map the supernodesto pro
essors, followed by the se
ond phase to s
hedule the tasks. Our 
ontributions areas follows. In 
ontrast to most of the existing algorithms whi
h use a tree to represent thedependen
ies between tasks, we use the symmetri
 pruned graphs of LT and U to representa

urate dependen
ies between tasks. For the �rst phase, we develop a generalization of theproportional mapping, and the resulting algorithm represent one of the main 
ontributionsof the paper. For the se
ond phase, we use a list s
heduling heuristi
. We show thatthis s
heduling algorithm is espe
ially e�e
tive to improve the s
alability on large numberof pro
essors for very sparse matri
es. Compared with the 2D mapping, the number ofmessages is signi�
antly redu
ed from between 9023 and 50682 to between 615 and 3856 on64 pro
essors. Moreover, the proposed mapping and s
heduling algorithm is fast, with itstime 
omplexity linear in the size of the input DAG, i.e., the symmetri
 pruned graph of U .The rest of the paper is organized as follows: Se
tion 2 introdu
es the dependen
ygraphs for the LU fa
torization with stati
 pivoting, and des
ribes the s
heduling algorithmfor the graph to minimize the exe
ution time. Experimental results and 
omparisons withSuperLU DIST solver are presented in Se
tion 3, followed by the 
on
lusions and futurework in Se
tion 4. 2



2 The mapping and s
heduling algorithmLet a square matrix be partitioned into blo
ks of submatri
es. This is usually obtainedby partitioning the 
olumns using the unsymmetri
 supernodes (
olumns of L with thesame nonzero stru
ture [2℄). After that, the same partitioning is applied to the rows of thematrix to further break ea
h supernode into blo
ks of submatri
es. We denote by Ukj (Lkj)a submatrix of U (L) at row blo
k index k and 
olumn blo
k index j. For ea
h 
olumnblo
k, we identify two types of tasks. Task Fa
tor(k) fa
torizes the 
olumn blo
k k andexists for ea
h 1 � k � N . Task Update(j, k) updates blo
k 
olumn k by blo
k 
olumn jand exists for j < k and Ujk 6= 0.1 The sparse LU fa
torization algorithm 
an be des
ribedas:for k := 1 to N dofor j := 1 to k � 1 with Ujk 6= 0 doPerform task Update(j, k);end forPerform task Fa
tor (k);end forWe use two phases to distribute the data and to s
hedule the 
omputations, as in thePaStiX solver. In the �rst phase we assign a set of 
andidate pro
essors to the 
omputationof ea
h supernode. In the se
ond phase we s
hedule the 
omputations in order to mini-mize the exe
ution time. During the se
ond phase, the 
omputation of ea
h supernode iss
heduled on a pro
essor from its 
andidate pro
essors set.The two phases of the s
heduling algorithm use the dependen
ies between tasks. In the
ase of an unsymmetri
 matrix A, several tools 
an be used to represent the dependen
ies:� the elimination tree of A+ AT [14℄;� the elimination DAGs of LT and U [8℄;� the symmetri
 pruned graphs of LT and U [4, 5℄.The elimination tree of A+ AT is a stru
ture o�ering simple manipulation and a

ess.This tree 
an be used to represent the dependen
ies between supernodes, but it overesti-mates these dependen
ies. The elimination DAGs of L and U are the transitive redu
tionsof the graphs of L and U , and are a 
ompa
t way of representing all dependen
ies between
omputations, and only those dependen
ies. But a major disadvantage is their signi�
antamount of 
onstru
tion time.A good tradeo� is to use the symmetri
 pruned graphs of LT and U . These graphs 
anbe built very eÆ
iently [4, 5℄. Even if they introdu
e redundant dependen
ies 
omparedto the elimination DAGs, we experimentally observed that they 
ontain few redundantedges. Thus, they 
an be used e�e
tively. However, due to their simpli
ity, we still use theelimination DAGs to develop the theoreti
al results. Knowing that all these results are alsovalid if used with the symmetri
 pruned graphs, our experimental results are based on thesymmetri
 pruned graphs of LT and U .1The details of the Fa
tor() and Update() tasks are not important in des
ribing the algorithms in thispaper. 3



2.1 Finding a set of 
andidate pro
essorsThe goal of the �rst phase is to assign a set of pro
essors to ea
h supernode, su
h that thesepro
essors 
an parti
ipate eÆ
iently in the fa
torization of the supernode.For symmetri
 matri
es, the proportional mapping algorithm [15℄ attempts to map de-pendent 
omputations on the same pro
essor while balan
ing the load. This algorithmuses the elimination tree to represent the dependen
ies between supernodes. It starts byassigning all pro
essors to the root. Then it 
onsiders the subtrees of the root in des
end-ing workload order. It assigns to ea
h subtree a subset of pro
essors proportional to theworkload of the subtree. The algorithm 
ontinues until only one pro
essor is assigned toea
h subtree. The advantage of this algorithm is that the 
ommuni
ation in a subtreeis restri
ted to only between the pro
essors assigned to this subtree, thus ensuring a low
ommuni
ation 
ost.For unsymmetri
 matri
es, we are interested in using more a

urate information on thedependen
ies between supernodes, and in this 
ase the elimination DAG of U is helpful.This led us to 
onsider a generalization of the proportional mapping algorithm to the DAGs.At ea
h step of the algorithm, we 
onsider a node i of the graph and its set of pro
essors.Our goal is to assign to ea
h prede
essor j of node i a subset of i's pro
essors, su
h thatthe 
ommuni
ation between node i and its prede
essors is minimized.When the proportional mapping algorithm is applied to the elimination tree, ea
h nodej has only one su

essor i, and assigning to node j a subset of pro
essors from the set ofpro
essors of i will redu
e the 
ommuni
ation. In the 
ase of the elimination DAG, a nodej has several su

essors, and it 
an 
ommuni
ate data to all these su

essors. The basi
idea of our approa
h is to assign to node j several pro
essors from its su

essors. We assignmore pro
essors from the su

essors with whom node j 
ommuni
ates more. To do so, wein
lude a proportion of the workload asso
iated with j to the workload asso
iated with ea
hof its su

essor i. This proportion depends on the 
ommuni
ation between j and i.Sin
e we only want to 
onsider 
ommuni
ation between j and its immediate su

essors,a new problem arises. Some of the edge j ! k in the graph of U disappears and o

urs as apath of length greater than one in the elimination DAG (e.g., j ! i! k). So node j needs toupdate its immediate su
essors and some of its an
estors in the elimination DAG. How do weestimate the 
ommuni
ation between node j and its immediate su

essor i in the eliminationDAG? We propose to approximate this as follows. We �rst 
ompute total 
ommuni
ationvolume to node i, in
luding all the in
oming edges to i in the graph of U . We then dividethis amount equally among i's immediate prede
essors in the elimination DAG. In otherwords, all the 
ommuni
ation from i's des
endents are treated as the 
ommuni
ation fromi's immediate prede
essors, so that the global 
ommuni
ation information is retained evenin the presen
e of graph 
ontra
tion.Algorithm 1 
onsiders the 
oating-point operations to fa
torize a supernode (FSN), thenumber of prede
essors of ea
h supernode in the graph (noPred), the volume of 
ommu-ni
ation involved in the fa
torization of supernode i (avgCommIn[i℄), and the volume of
ommuni
ation from supernode j to its su

essors (
ommOut[j℄). Using this information,the algorithm 
omputes the workload asso
iated with ea
h supernode (WSN), taking intoa

ount the workload of its prede
essors and the 
ommuni
ation with its prede
essors.After 
omputing the workload asso
iated with ea
h supernode, we 
an 
ompute the setof 
andidate pro
essors using Algorithm 2. This algorithm takes as input the dependen
ygraph G, annotated with the workload and 
ommuni
ation, and returns for ea
h supernode4



Algorithm 1 Compute the 
ommuni
ation and the workload of ea
h supernodeInput G: graph representing the dependen
ies between supernodesfor i := 1 to N do
ompute CommIn[i℄ and FSN [i℄;avgCommIn[i℄ := CommIn[i℄=noPred[i℄;for ea
h prede
essor j of i in G do
ommOut[j℄ += avgCommIn[i℄end forend forfor i := 1 to N doWSN [i℄ := FSN [i℄;for ea
h prede
essor j of i in G doWSN [i℄+ = avgCommIn[i℄=
ommOut[j℄ �WSN [j℄;end forend fora set of 
andidate pro
essors. We add to the dependen
y graph G a sink supernode N + 1,whi
h is used to start the algorithm.Algorithm 2 is a generalization of the proportional mapping algorithm of Pothen andSun [15℄. The main di�eren
e is that for ea
h node i, it 
onsiders a proportion of theworkload of ea
h prede
essor to assign a subset of its pro
essors, taking into a

ount thevolume of 
ommuni
ation. Note that if the input graph G is a tree, the algorithm isidenti
al to the proportional mapping algorithm. If G is a tree and i is the parent of j inthis tree, then 
ommOut[j℄ will be equal to avgCommIn[i℄. Thus the workload asso
iatedwith supernode i, denoted as WSN [i℄, is equal to the sum of the workloads asso
iated withall the nodes belonging to the subtree rooted at i, similar to the proportional mappingalgorithm of Pothen and Sun.Now we illustrate the exe
ution of this algorithm on an example matrix B in Figure 1,where ea
h 
olumn 
orresponds to a supernode and ea
h nonzero element 
orresponds to ablo
k.
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Figure 1: A supernodal matrix B = L+ U � IFirst, we illustrate the exe
ution of the proportional mapping algorithm of Pothen andSun in Figure 2. This �gure shows the elimination tree of B + BT , and ea
h node of thistree 
orresponds to a supernode of the supernodal matrix B. At the right of ea
h node i welabel the information used by the proportional mapping algorithm, i.e. FSN represents the
oating-point operations to 
ompute supernode i, and WSN represents the load asso
iated5



Algorithm 2 Generalized proportional mapping algorithm for a DAGInput: G: an annotated graph representing the dependen
ies and workload, E: set of pro
essorspro
[N + 1℄ := E;for i := 1 to N dopro
[i℄ := ;;end forfor i := N + 1 to 1 doS := pro
[i℄, � := jSj;if i has prede
essors thenlet j1; j2; : : : jq be the prede
essors of i, s.t. WSN (j1) � : : : �WSN (jq );WSN [i℄ � = FSN [i℄;for pred := j1 to jq dow := avgCommIn[i℄=
ommOut[pred℄�WSN [pred℄;k := w=WSN [i℄� � + 0:5;if k = 0 or S = ; then�nd a pro
essor p with the least workload from pro
[i℄;pro
[pred℄ pro
[pred℄[ fpgelseif k > jSj then k := jSj; endifC := a subset of k pro
essors from S;pro
[pred℄ pro
[pred℄[CS  S nC;end ifend forend ifend forwith the subtree rooted at supernode i, whi
h is the sum of the workloads of all the nodesbelonging to the subtree rooted at i. At the left of ea
h node i, we represent the set of
andidate pro
essors, whi
h later 
an take part in the 
omputation of supernode i. Forexample, node 5 disposes of 4 pro
essors, namely P0; P1; P2; P3. This node has two sons, 3and 4. The load of the subtree rooted at 3 represents 3=4 of the total load of the subtreerooted at 5, while the load of the subtree rooted at 4 represents 1=4 of this load. Thus,node 3 will re
eive three pro
essors P0; P1; P2, while node 4 will re
eive the pro
essor P3.Se
ond, we illustrate the exe
ution of our proportional mapping algorithm on the sameexample matrix B in Figure 1. The elimination DAG of U is shown in Figure 3. Again,the nodes of this graph represent supernodes of B. In Figure 3 we label at the right ofea
h node its 
orresponding values in the arrays WSN and FSN . These values are usedin Algorithm 2. Moreover, avgCommIn[i℄ is labeled on ea
h edge to i, thus the value
ommOut[j℄ is the sum of the outgoing edges from j. As an example, the value of the loadWSN asso
iated with node 8 is obtained by doing the sum 50+ 200+ (300 � 6=9)+ (250 �6=30) = 500.In Figure 4 we present the set of 
andidate pro
essors assigned to ea
h node by Al-gorithm 2. In this �gure, node 10 was added as a starting point for the exe
ution of thealgorithm. Consider node 2. This node 
ommuni
ates mainly with its su

essor 3, thusit re
eives a pro
essor from node 3 and no pro
essor from node 5. Node 3 
ommuni
atesroughly the same amount of data to its two su

essors, and thus it re
eives a pro
essor fromea
h one of its su

essors 8 and 9.By 
omparing the results of the exe
utions when using the elimination tree of B + BT6
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2Figure 4: Illustration of Algorithm 2 on the elimination DAG from Figure 3(Figure 2) and the elimination DAG of U (Figure 4), we noti
e that our approa
h usingthe elimination DAG tries to minimize the 
ommuni
ation by 
onsidering the dependen
iesbetween supernodes and their 
ommuni
ation. Node 3 in Figure 2 has re
eived a subset ofpro
essors from node 5, even if there is no dependen
y between supernodes 5 and 3. This isdue to the fa
t that the elimination tree of A+ AT introdu
es false dependen
ies betweensupernodes.2.2 S
heduling the 
omputationsAfter the phase for mapping a supernode to a set of 
andidate pro
essors, we performs
heduling. We use a list-based s
heduling heuristi
 [6, 16℄ in this phase, whi
h assigns thetasks asso
iated with the 
omputation of ea
h supernode to a pro
essor from the set of
andidate pro
essors.A left-looking approa
h with a 1D distribution of the data is used: the 
omputaion ofa supernode k is assigned to one pro
essor; the updates to supernode k (Update(*, k)) areexe
uted just before the fa
torisation of this supernode (Fa
tor(k)).With this approa
h, the elimination DAG of U gives all the dependen
ies betweensupernodes 
omputations, and hen
e it 
an be used as a dependen
y graph in the lists
heduling algorithm. Ea
h node of this graph 
orresponds to a supernode. An entrysupernode is de�ned as a supernode with no in
oming edges, while an exit supernode isde�ned as a supernode with no outgoing edges. During the s
heduling, a supernode be
omesready when all its prede
essors were s
heduled.Ea
h supernode has a 
omputation 
ost, whi
h is the number of 
oating-point operationsperformed for this supernode. Ea
h edge is assigned a 
ommuni
ation 
ost, whi
h is equalto the volume of data transferred between its two end supernodes. Using this information,we assign the priority of ea
h supernode as the longest path from this supernode to an exitsupernode. The length of the path is the sum of the 
ommuni
ation and the 
omputation8




osts of its 
onstituent edges and supernodes.For ea
h pro
essor we maintain a list of ready supernodes and the pro
essor's start time.At ea
h iteration of the s
heduling loop, we sele
t the pro
essor with the earliest start time.From its list of ready supernodes, the supernode with the highest priority is sele
ted (saysupernode k), and needs to be assigned to one of its 
andidate pro
essors that 
an exe
ute itat the earliest time. Thus, we attempt to assign the supernode to ea
h pro
essor in its set of
andidate pro
essors, and determine on whi
h pro
essor the 
omputation of this supernode
an have the earliest start time. The supernode is then mapped on the sele
ted pro
essorand the tasks asso
iated with its 
omputation (tasks Update(*, k) and Fa
tor(k) 
an bes
heduled as soon as the 
omputation of the last supernode assigned to that pro
essor is�nished. To overlap 
omputations and 
ommuni
ations, we 
onsider a valid order betweentasks Update(*, k), and we s
hedule them in the order in whi
h the data needed from itsprede
essors has arrived lo
ally; we dis
uss the valid order further in this se
tion.The pro
essor start time is updated as the �nish time of the supernode s
heduled onthat pro
essor. If a su

essor of the 
urrent supernode be
omes ready for exe
ution, thenit is added to the ready list of every pro
essor in its 
andidates set. The s
heduling loop isrepeated as long as there exist uns
heduled supernodes.A valid order between tasks Update(j, k) is given by the as
ending order of the indi
esj. Using the elimination DAG of LT , we 
an obtain a valid order whi
h uses more a

urateinformation on the dependen
ies between these tasks.The following lemma gives the dependen
y between the updates from two supernodesi; i0 to supernode k, where i; i0 are linked by a path in the elimination DAG of LT .Lemma 1 Consider supernodes i; i0 and k su
h that i0 is the su

essor of i in the elimi-nation DAG of LT and tasks Update(i, k), Update(i', k) exist. Then task Update(i, k) hasto be 
ompleted before task Update(i', k) 
an start its exe
ution.Proof As i0 is the su

essor of i in the elimination DAG of LT , then blo
k Li0i is nonzero.As tasks Update(i, k), Update(i', k) exist, we 
an dedu
e that blo
ks Uik ; Ui0;k are alsononzero.Task Update(i', k) 
an begin its exe
ution as soon as all the updates to blo
k Ui0k are�nished. As task Update(i, k) is one of these updates, then this task must modify blo
kUi0k before task Update(i', k) 
an start its exe
ution. 2Let i; i0 be two supernodes su
h that i < i0. If there is no path from i to i0 in theelimination DAG of LT , then blo
k Li0i is zero. Consider another node k su
h that tasksUpdate(i, k), Update(i', k) exist. Then there is no dependen
y between the two tasks, as taskUpdate(i, k) does not modify blo
k Ui0k ne
essary for the exe
ution of task Update(i', k).From these results, the dependen
ies 
an be de�ned as follows :� There is a task Update(i, k) for ea
h Uik 6= 0 and 1 � i < k � N .� There is a dependen
y from Update(i, k) to Update(i', k) if i0 is the su

essor of i inthe elimination DAG of LT .� There is a dependen
y from Update(i, k) to Fa
tor(k) if i is an exit node, or thesmallest su

essor j of i in the elimination DAG of LT is no smaller than k.We illustrate in Figure 5 these rules by 
omputing the dependen
ies between the tasksasso
iated with supernode 8 for the matrix in Figure 1. Before fa
torizing this supernode9



(task Fa
tor(8) in the dependen
y graph), supernode 8 is updated by supernodes 1; 2; 3; 5and 7. A valid order of these updates is given by the as
ending order of the sour
e supern-odes in the updates 1; 2; 3; 5; 7. However, an order exhibiting more parallelism is the orderusing the elimination DAG. Hen
e, there is a dependen
y from Update(1, 8) to Update(3, 8)be
ause 3 is the su

essor of 1 in the elimination DAG of LT (the elimination DAG of LT ispresented in Figure 6). But there is no dependen
y between Update(2, 8) and Update(3, 8)be
ause there is no path from 2 to 3 in the elimination DAG of LT .
Factor(1)

Factor(3)

Update(1,8)

Update(3,8)

Factor(2)

Update(2,8)

Factor(5)

Update(5,8)

Update(7,8)

Factor(8)

Factor(7)Figure 5: Illustration of several dependen
ies involved in the fa
torization of supernode 8for the matrix in Figure 1
4 6

1

2

7 9

5 8

3Figure 6: Elimination DAG of LT 
orresponding to the matrix in Figure 110



Matrix Order nnz(A) nnz(L+ U � I) Flops�106 �109af23560 23650 460598 12.8 5.41bbmat 38744 1771722 36.2 27.80ex11 16614 1096948 14.1 5.99onetone1 62424 1717792 11.8 0.90onetone2 36057 227628 1.3 0.23rma10 46835 2374001 14.7 1.60venkat01 62424 1717792 11.8 2.41wang4 26064 177196 27.7 8.78Table 1: Ben
hmark matri
es.3 Experimental resultsIn this se
tion, we present the experimental results obtained when applying the new s
hedul-ing te
hniques on the real world matri
es. We tested the new fa
torization method on anIBM SP RS/6000 distributed memory ma
hine at NERSC. The system 
ontains 2944 
om-pute pro
essors distributed among 184 
ompute nodes. Ea
h pro
essor is 
lo
ked at 375Mhz and has a peak performan
e of 1:5 GFlops. Ea
h node has 16 to 64 Gbytes of sharedmemory. We used several medium and large matri
es from a variety of appli
ation domains.These matri
es and their 
hara
teristi
s are presented in table 1, whi
h in
ludes the matrixorder, the number of nonzeros in the matrix A, the number of nonzeros in the fa
tors Land U , and the number of 
oating-point operations.Table 2 presents the size of the supernodal graph and its symmetri
 pruned graph.The se
ond and the third 
olumns list the number of nodes and edges in the supernodalgraph of U . The fourth 
olumn lists the number of edges in the symmetri
 pruned graphof U . The �fth and the sixth 
olumns list the number of entry and exit supernodes in thesymmetri
 pruned graph of U . For all our test matri
es, the supernodal symmetri
 prunedgraph of U is mu
h smaller than the supernodal graph of U . Very often, there are one orderof magnitude fewer edges than in the supernodal graph of U . Three of the test matri
es(ex11, venkat01 and wang4) are stru
turally symmetri
, in whi
h 
ase the pruned graphis a tree. Computing the symmetri
 pruned graph takes very little time, and this time isin
luded in the s
heduling time overhead reported in Figure 7 and Table 5.We now 
ompare the performan
e of the new fa
torization algorithm (referred as SCHED)to the fa
torization algorithm in SuperLU DIST (referred as SLUD). In parti
ular, we 
om-pare the load balan
e, the amount of 
ommuni
ation and the runtime.For both algorithms, the prepro
essing steps are the same. These in
lude a step topermute large entries on the diagonal (using the routine MC64 [3℄), followed by a symetri
permutation to preserve the sparsity (using multiple minimum degree algorithm appliedon A + AT [13℄) and the symboli
 fa
torization to get the stru
tures of L and U . Onlythe numeri
al fa
torization phase is di�erent in the two approa
hes. This in
ludes thematrix distribution and the a
tual fa
torization. After the prepro
essing steps, SLUDdistributes the data among pro
essors using a 2D blo
k-
y
li
 distribution on a 2D grid ofpro
essors. Lo
ally on the set of owner pro
essors, ea
h supernode of L is stored in a 
olumnoriented format, while ea
h supernode of U is stored in a row oriented format. This storage11



Matrix #snodes #edges #edges #entries #exitsG(SNU) G(pr SNU) G(pr SNU) G(pr SNU)af23560 10543 78962 10700 7482 1bbmat 12726 214767 16944 5451 1ex11 2597 23603 2596 678 1onetone1 22370 123427 37323 10274 611onetone2 21682 69098 27602 10426 611rma10 7861 33265 7862 3045 1venkat01 13570 61348 13569 4116 1wang4 16302 89082 16301 11710 1Table 2: Chara
teristi
s of the graphs. G(SNU) is the supernodal graph of U . G(pr SNU)is the symetri
 pruned supernodal graph of U.P = 4 P = 16 P = 32 P = 64 P = 128af23560 SCHED 0.91 0.96 0.91 0.75 0.52SLUD 0.94 0.81 0.75 0.62 0.58bbmat SCHED 0.99 0.88 0.82 0.79 0.62SLUD 0.97 0.91 0.80 0.65 0.60ex11 SCHED 0.98 0.85 0.69 0.54 0.32SLUD 0.97 0.93 0.83 0.67 0.52onetone1 SCHED 0.94 0.74 0.49 0.48 0.24SLUD 0.86 0.83 0.66 0.50 0.45onetone2 SCHED 0.83 0.46 0.40 0.31 0.16SLUD 0.81 0.64 0.59 0.40 0.21rma10 SCHED 0.88 0.70 0.49 0.66 0.48SLUD 0.89 0.70 0.67 0.49 0.43venkat01 SCHED 0.95 0.91 0.90 0.63 0.37SLUD 0.93 0.75 0.74 0.56 0.47wang4 SCHED 0.98 0.90 0.76 0.87 0.52SLUD 0.99 0.91 0.86 0.75 0.60Table 3: Load balan
e results.s
heme �ts well the right-looking fa
torization. In SCHED, a master pro
essor exe
utes thes
heduling algorithm, and then sends the ne
essary information to all the other pro
essors toguide the numeri
al fa
torization. Ea
h supernode is distributed on its owner pro
essor, andis stored using a 
olumn oriented format, for both L and U . This storage is well adaptedto the left-looking fa
torization. After the distribution, the numeri
al fa
totorization isperformed using the valid task order established by the s
heduling algorithm.To evaluate the load balan
e, we 
onsider the load asso
iated with a pro
essor as beingthe number of 
oating-point operations performed on this pro
essor. As des
ribed in [11℄,the load balan
e fa
tor 
an be 
omputed as the average load divided by the maximum loadamong all the pro
essors. Thus, the 
loser is this fa
tor to 1, the better is the load balan
e.Table 3 shows the load balan
e fa
tors. Compared with the 2D blo
k-
y
li
 mapping, theproportional mapping algorithm usually improves load balan
e, with very few ex
eptions.Table 4 
ompares the amount of 
ommuni
ation of the two algorithms. For ea
h matrix,we report the average 
ommuni
ation volume and the average number of messages per12



P = 4 P = 16 P = 32 P = 64 P = 128af23560 SCHED Vol 20.83 22.27 18.47 14.04 8.20SLUD Vol 27.27 21.25 16.38 13.01 8.13SCHED #Mess 5647 2474 1869 1465 1250SLUD #Mess 26185 36350 26632 33638 20301bbmat SCHED Vol 90.69 81.75 75.00 53.50 49.98SLUD Vol 81.53 62.67 51.23 38.09 27.77SCHED #Mess 9663 3931 3307 2469 2442SLUD #Mess 31719 45815 37640 46521 32686ex11 SCHED Vol 25.72 25.98 23.15 13.57 9.71SLUD Vol 25.02 19.44 15.45 11.98 8.00SCHED #Mess 2435 1002 907 615 586SLUD #Mess 6486 9336 7247 9023 5639onetone1 SCHED Vol 7.90 6.59 6.20 5.95 3.94SLUD Vol 7.56 5.82 4.16 3.56 2.26SCHED #Mess 46303 2859 3115 3856 2653SLUD #Mess 47639 57738 37322 50682 29359onetone2 SCHED Vol 3.58 2.90 2.24 1.29 0.96SLUD Vol 4.16 3.25 2.20 2.05 1.20SCHED #Mess 14601 1934 2052 881 701SLUD #Mess 46173 53654 32701 45379 24176rma10 SCHED Vol 13.64 8.37 6.69 5.13 3.33SLUD Vol 21.73 16.98 11.14 10.33 5.52SCHED #Mess 1861 839 719 566 469SLUD #Mess 19049 23743 14890 19717 10631venkat01 SCHED Vol 14.95 9.86 8.50 7.29 4.04SLUD Vol 27.65 21.33 14.00 12.62 6.91SCHED #Mess 1505 545 632 627 428SLUD #Mess 33556 42675 26918 35343 19143wang4 SCHED Vol 34.41 33.34 32.85 24.29 22.17SLUD Vol 24.59 18.91 14.78 11.47 8.07SCHED #Mess 12308 2703 2684 2038 2123SLUD #Mess 39470 50035 32983 43182 24582Table 4: Average 
ommuni
ation volume and number of messages per pro
essor.pro
essor. For all the test matri
es, SCHED leads to a large redu
tion in the number ofmessages. Usually the average number of messages in
reases with the in
reasing number ofpro
essors up to 16 or 32, and then it starts de
reasing. On the other hand, the volumeof 
ommuni
ation for SCHED is not always smaller than for SLUD. Sometimes SCHEDis better and sometimes SLUD is better. But the di�eren
e is not dramati
. The worst
ase is matrix wang4, for whi
h the SCHED's 
ommuni
ation volume is twi
e more thanthat of SLUD. These results imply that in SCHED, the message size is usually mu
h biggerthan that in SLUD. This is mainly be
ause using the 1D distribution in SCHED, a message
ontains an entire supernode k of L. Whereas in SLUD, a message 
ontains only a part ofsupernode k of L. Therefore, it is important to overlap 
omputation with 
ommuni
ation soto avoid the idle time waiting for the messages. This is well addressed in the new s
hedulingalgorithm.Finally, we 
ompare the a
tual runtimes in Figure 7. (The runtimes are also tabulated intable 5.) Ea
h plot in the �gure 
orresponds to one matrix with varying number of pro
es-13



sors. Sin
e the two algorithms di�er in matrix distribution and numeri
al fa
torization, weseparately report the distribution time (labeled \dist") and the fa
torization time (labeled\fa
t"). We also report the total time whi
h is the sum of the two. SCHED also needs topay a small 
ost of s
heduling overhead. We report this separately (labeled \s
hedule").The reason we do not in
lude this in the total time for SCHED is that when the matri
esof the same nonzero stru
ture are fa
torized multiple times, the s
heduling algorithm willonly be invoked on
e, and hen
e the 
ost is very small.On smaller number of pro
essors (less than 16), the distribution time for SCHED
an be drasti
ally smaller than that for SLUD, su
h as matri
es af23560, onetone1 andonetone2. This is due to the fa
t that storing both supernodes of L and U in a 
olumn ori-ented format 
an lead to a more eÆ
ient distribution algorithm. But with in
reasing numberof pro
essors, the distribution time for SCHED in
reases, while for SLUD it de
reases. Onone pro
essor, the time di�eren
e is only in the distribution step. The fa
torization speedis about the same for both 
odes.When 
omparing the total time of both distribution and fa
torization, SCHED is fasterthan SLUD for 6 matri
es; it is more than twi
e faster for matrix venkat01. We observedmore improvement on a large number of pro
essors, where the total number of messagesusually in
reases. In this 
ase it is even more important to redu
e the number of messages,and thus SCHED approa
h is e�e
tive. The time 
ontinues to de
rease when in
reasing thenumber of pro
essors up to 64. Beyond 64 pro
essors, only the time for bbmat 
ontinuesto de
rease. This implies that this set of test matri
es is not large enough to demonstrates
alability of the algorithms. In the future, we will test larger matri
es.For ex11 and bbmat, SLUD is faster than SCHED. These two matri
es are relativelydenser than the other matri
es. We suspe
t that these matri
es exhibit limited amountof parallelism to be exploited in a left-looking algorithm with a 1D distribution. The 2Dblo
k-
y
li
 distribution used by SLUD 
an exploit more parallelism. As part of the futurework, we will study the performan
e impa
t on denser matri
es when using a 1D partitionor a 2D partition (the 2D partition was shown to be more s
alable for dense matri
es). Wewill also evaluate the paralelism available in a left-looking algorithm versus a right-lookingalgorithm.4 Con
lusions and future workIn this paper we present a new assignment and stati
 s
heduling algorithm for sparse LUfa
torization with stati
 pivoting. This algorithm uses the symmetri
 pruned graphs of LTand U to represent the dependen
ies between 
omputations, thus exploiting the parallelismdue to the sparsity and asymmetry of the matrix. Experimental results show that ourapproa
h leads to a large redu
tion in the number of messages, and for very sparse matri
esthe performan
e 
ompares favorably to that of the SuperLU DIST solver on the IBM SPRS/6000 ma
hine. Furthermore, the proposed s
heduling algorithm is easy to implementand is fast, with its time 
omplexity linear in the size of the input DAG, i.e., the symmetri
pruned graph of U .In an earlier work 
omparing SuperLU DIST and MUMPS [1℄, it was found that MUMPSis faster for smaller numbers of pro
essors (e.g., up to 64 on a Cray T3E), but SuperLU DISTis faster for larger numbers of pro
essors and shows better s
alability. The new fa
torizationalgorithm SCHED in this paper usually performs better than SuperLU DIST, espe
ially forsparser matri
es and larger ma
hines. Therefore, it 
ompares favorably with MUMPS for14
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P = 1 P = 4 P = 16 P = 32 P = 64 P = 128af23560 s
hedule 0.21 0.20 0.30 0.32 0.27 0.32SCHED 13.19 4.51 2.82 2.19 2.29 1.99SLUD 17.38 6.05 3.36 2.93 3.53 3.38bbmat s
hedule 0.90 0.88 0.92 0.93 0.99 1.02SCHED 75.75 34.28 12.75 9.53 8.17 7.83SLUD 82.78 24.27 9.74 7.13 7.16 7.60ex11 s
hedule 0.10 0.05 0.06 0.06 0.07 0.08SCHED 11.55 4.20 2.24 2.30 2.35 2.80SLUD 11.14 3.96 1.99 1.67 2.04 2.11onetone1 s
hedule 0.36 0.32 0.37 0.42 0.51 0.60SCHED 9.78 4.40 3.91 2.61 2.90 3.04SLUD 34.13 10.21 4.30 3.27 3.65 4.88onetone2 s
hedule 0.27 0.20 0.22 0.26 0.32 0.45SCHED 3.07 1.73 1.71 1.58 1.63 1.84SLUD 27.27 8.88 4.18 3.14 3.77 3.43rma10 s
hedule 0.19 0.09 0.09 0.10 0.13 0.17SCHED 6.45 2.38 2.08 1.37 1.89 2.15SLUD 8.43 3.94 3.04 2.74 4.13 3.95venkat01 s
hedule 0.18 0.14 0.16 0.18 0.21 0.30SCHED 8.68 3.22 2.13 1.28 1.99 2.03SLUD 16.73 6.75 4.48 3.92 5.25 5.28wang4 s
hedule 0.26 0.21 0.30 0.28 0.33 0.40SCHED 19.27 5.60 2.89 2.73 2.55 3.23SLUD 30.57 9.20 4.47 3.57 4.43 4.18Table 5: S
hedule time in se
onds (s
hedule), total numeri
al fa
torization time in se
onds(in
luding data distribution time) on the IBM SP RS/6000.
16



large numbers of pro
essors.Future work remains to improve the performan
e of the new approa
h and several av-enues 
an be explored. A more a

urate performan
e model should be developped in orderto e�e
tively use the list s
heduling algorithm and to redu
e the pro
essor's idle time. Moreoptimizations 
an be done to better overlap 
omputation and 
ommuni
ation. Methods for
ontrolling the memory requirement on ea
h pro
essor will be analyzed and implemented,whi
h 
an improve the memory usage of the left-looking s
heme.To speed up the numeri
al fa
torization for denser matri
es, we plan to extend ourmethods so that both 1D and 2D distributions will be used. During the list s
hedulingalgorithm, the 
omputation of ea
h supernode will be assigned to one pro
essor (in 1D dis-tribution) or several pro
essors (in 2D distribution), depending on the workload asso
iatedto this supernode and the number of pro
essors in the set of 
andidate pro
essors. Thusboth task and data parallelism will be exploited in the program.One �nal remark is about the 
hoi
e of the algorithm { when to use SCHED and whento use SLUD, sin
e both have merits. As we mentioned earlier, we think SCHED performsbetter for sparser problems. So we sort the matri
es in terms of density, whi
h is de�nedas nnz(L + U)=n2, and plot the performan
e gain of SCHED over SLUD in �gure 8. Ifour 
onje
ture was true, ea
h line would in
rease monotonously with in
reasing density.We somewhat see this trend, with some ex
eptions, su
h as matri
es af23560 and wang4,
orresponding to the two dips in the plots. These two matri
es are relatively dense, butSCHED performs better. We admit that the performan
e gain is a 
omplex fun
tion of theinput matrix and the two di�erent algorithms. More fa
tors than just sparsity a�e
t theperforman
e. It remains an open question to predi
t performan
e of di�erent algorithmsfrom the input matrix in order to help 
hoose the right algorithm. For this, we plan toin
lude a mu
h larger set of matri
es and analyze the global trend.
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